Variance Reduction Techniques of Importance Sampling Monte Carlo Methods for Pricing Options
نویسندگان
چکیده
In this paper we discuss the importance sampling Monte Carlo methods for pricing options. The classical importance sampling method is used to eliminate the variance caused by the linear part of the logarithmic function of payoff. The variance caused by the quadratic part is reduced by stratified sampling. We eliminate both kinds of variances just by importance sampling. The corresponding space for the eigenvalues of the Hessian matrix of the logarithmic function of payoff is enlarged. Computational Simulation shows the high efficiency of the new method.
منابع مشابه
Monte Carlo methods for pricing financial options
Pricing financial options is amongst the most important and challenging problems in the modern financial industry. Except in the simplest cases, the prices of options do not have a simple closed form solution and efficient computational methods are needed to determine them. Monte Carlo methods have increasingly become a popular computational tool to price complex financial options, especially w...
متن کاملOn pricing discrete barrier options using conditional expectation and importance sampling Monte Carlo
Estimators for the price of a discrete barrier option based on conditional expectation and importance sampling variance reduction techniques are given. There are erroneous formulas for the conditional expectation estimator published in the literature: we derive the correct expression for the estimator. We use a simulated annealing algorithm to estimate the optimal parameters of exponential twis...
متن کاملA Martingale Control Variate Method for Option Pricing with Stochastic Volatility
A generic control variate method is proposed to price options under stochastic volatility models by Monte Carlo simulations. This method provides a constructive way to select control variates which are martingales in order to reduce the variance of unbiased option price estimators. We apply a singular and regular perturbation analysis to characterize the variance reduced by martingale control v...
متن کاملVariance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-factor Stochastic Volatility Models
We present variance reduction methods for Monte Carlo simulations to evaluate European and Asian options in the context of multiscale stochastic volatility models. European option price approximations, obtained from singular and regular perturbation analysis [J.P. Fouque, G. Papanicolaou, R. Sircar and K. Solna: Multiscale Stochastic Volatility Asymptotics, SIAM Journal on Multiscale Modeling a...
متن کاملModified Monte Carlo with Importance Sampling Method
Monte Carlo simulation methods apply a random sampling and modifications can be made of this method is by using variance reduction techniques (VRT). VRT objective is to reduce the variance due to Monte Carlo methods become more accurate with a variance approaching zero and the number of samples approaches infinity, which is not practical in the real situation (Chen, 2004). These techniques are ...
متن کامل